资源类型

期刊论文 402

年份

2023 37

2022 44

2021 26

2020 28

2019 29

2018 16

2017 19

2016 18

2015 12

2014 16

2013 11

2012 7

2011 22

2010 34

2009 17

2008 23

2007 14

2006 6

2005 3

2004 4

展开 ︾

关键词

多联产 2

数值模拟 2

热电联产 2

热释放速率 2

2D—3D配准 1

6016 合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

CO2利用 1

Cu(Inx 1

Cuk矩阵变换器 1

Ga1–x)Se2 1

GaAs基微结构材料 1

Inconel 718合金 1

Laves相 1

M23C6 碳化物 1

McCormick包络 1

展开 ︾

检索范围:

排序: 展示方式:

Augmentation of natural convective heat transfer by acoustic cavitation

Jun CAI, Xiulan HUAI, Shiqiang LIANG, Xunfeng LI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 313-318 doi: 10.1007/s11708-009-0064-3

摘要: An experimental study was conducted to investigate the effects of acoustic cavitation on natural convective heat transfer from a horizontal circular tube. The experimental results indicated that heat transfer could be enhanced by acoustic cavitation and had the best effect when the head of the ultrasonic transducer was over the midpoint of the circular tube, and the distance between the head and the tube equaled 15 mm. The augmentation at low heat flux was better than that in the case of high heat flux. Based on experimental results, the correlation formula of Nusselt number for water was obtained.

关键词: heat transfer enhancement     augmentation     acoustic cavitation     acoustic streaming     convective heat transfer    

Numerical analysis on heat transfer enhancement by longitudinal vortex based on field synergy principle

WU Junmei, TAO Wenquan

《能源前沿(英文)》 2007年 第1卷 第3期   页码 365-369 doi: 10.1007/s11708-007-0055-1

摘要: Three-dimensional numerical simulation results are presented for a fin-and-tube heat transfer surface with vortex generators. The effects of the Reynolds number (from 800 to 2 000) and the attack angle (30º and 45º) of a delta winglet vortex generator are examined. The numerical results are analyzed on the basis of the field synergy principle to explain the inherent mechanism of heat transfer enhancement by longitudinal vortex. The secondary flow generated by the vortex generators causes the reduction of the intersection angle between the velocity and fluid temperature gradients. In addition, the computational evaluations indicate that the heat transfer enhancement of delta winglet pairs for an aligned tube bank fin-and-tube surface is more significant than that for a staggered tube bank fin-and-tube surface. The heat transfer enhancement of the delta winglet pairs with an attack angle of 45º is larger than that with an angle of 30º. The delta winglet pair with an attack angle of 45º leads to an increase in pressure drop, while the delta winglet pair with the 30º angle results in a slight decrease. The heat transfer enhancement under identical pumping power condition for the attack angle of 30º is larger than that for the attack angle of 45º either for staggered or for aligned tube bank arrangement.

关键词: computational     inherent mechanism     staggered     decrease     transfer surface    

Numerical investigation and analysis of heat transfer enhancement in channel by longitudinal vortex based

TAO Wenquan, WU Junmei

《能源前沿(英文)》 2008年 第2卷 第1期   页码 71-78 doi: 10.1007/s11708-008-0001-x

摘要: 3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the synergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition.

关键词: inherent mechanism     integral     surface     rectanglar     longitudinal    

Numerical investigation on side heat transfer enhancement in 300 kA aluminum reduction cell

WANG Changhong, ZHU Dongsheng, LEI Junxi, ZHOU Jiemin

《能源前沿(英文)》 2008年 第2卷 第3期   页码 256-260 doi: 10.1007/s11708-008-0051-0

摘要: Industrial test and numerical simulation were synchronously applied to analyze the side heat transfer process and enhance heat transfer in aluminum reduction cell. The 3D slice finite element model of aluminum reduction cell was developed, with which the sidewall temperature field of the cell was computed by using software ANSYS. The main influencing factors on heat dissipation were analyzed and some effective measures were proposed to enhance sidewall heat transfer. The results show that the shell temperature of the test cell and the common cell is respectively 312°C and 318°C and the ledge thickness is 16 cm and 15 cm when side coefficient of heat transfer between the shell and the surroundings is 70 W/(mK). With the increase of the side coefficient of heat transfer between the shell and the surroundings, the temperature of the shell decreases but the thickness of the side ledge increases when the electrolytic temperature, the ambient temperature, the coefficient of heat transfer between molten bath and ledge, the eutectic temperature and the thermo-resistance of the side lining are constant.

关键词: constant     ambient temperature     thickness     electrolytic temperature     transfer process    

Numerical simulation and experimental research on heat transfer and flow resistance characteristics ofasymmetric plate heat exchangers

Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 267-282 doi: 10.1007/s11708-020-0662-7

摘要: The asymmetric plate heat exchanger (APHE) has the possibility of achieving balanced pressure drops on both hot and cold sides for situations with unbalanced flow, which may in turn enhance the heat transfer. In this paper, the single-phase water flow and heat transfer of an APHE consisted of two types of plates are numerically (400≤ ≤12000) and experimentally (400≤ ≤3400) investigated. The numerical model is verified by the experimental results. Simulations are conducted to study the effects of , an asymmetric index proposed to describe the geometry of APHEs. The correlations of the Nusselt number and friction factor in the APHEs are determined by taking and working fluids into account. It is found that an optimal exists where the pressure drops are balanced and the heat transfer area reaches the minimum. The comparison between heat transfer and flow characteristics of the APHEs and the conventional plate heat exchanger (CPHE) is made under various flow rate ratios of the hot side and the cold side and different allowable pressure drops. The situations under which APHE may perform better are identified based on a comprehensive index .

关键词: plate heat exchanger     asymmetric     simulation     correlation     heat transfer enhancement    

物料与窑壁间歇接触对回转窑传热过程的强化效应

雷先明,肖友刚

《中国工程科学》 2006年 第8卷 第8期   页码 39-44

摘要:

根据回转窑内物料颗粒的运动特点,推导了颗粒团在贴壁运动过程中的非稳态导热系数及界面处的接触传热系数,进而得出了物料与封盖窑壁间的换热系数;结合已有研究成果,建立了回转窑的传热数学模型。计算表明,未考虑物料与窑壁间歇接触对回转窑传热过程的强化效应时,物料温度偏低;温度越高,强化效应对物料温度的影响越大;考虑物料与窑壁间歇接触对回转窑传热过程的强化效应,有利于提高回转窑煅烧熟料的质量和热效率。

关键词: 物料     封盖     传热过程     强化效应    

Transversal tube pitch effects on local heat transfer characteristics of the flat tube bank fin mounted

Liangbi WANG, Zhimin LIN, Kangjie SUN, Yuanxin DONG, Song LIU, Yongheng ZHANG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 333-345 doi: 10.1007/s11708-009-0061-6

摘要: The tube bank fin is commonly used to increase the area of the heat transfer surface with a small heat transfer coefficient of a heat exchanger. If vortex generators (VGs) are punched on the fin surface, the heat transfer performance of the fin can be improved. This paper focused on the effect of transversal tube pitch on the local heat transfer performance of the three-row flat tube bank fin mounted with VGs. On the fin surface, constructing the flow channel but without mounted VGs, the transversal tube pitch was greater, and the span averaged Nusselt number downstream was larger because fewer interactions of vortices would be generated from different VGs located upstream. When the area goodness factor was used as the criteria on the condition of one tube unit of heat exchanger for commonly used fin materials and fin thickness, the transversal tube pitch has considerable effect on the heat transfer enhancement of VGs. Large transversal tube pitch is more sensitive to fin material than to fin thickness.

关键词: heat transfer enhancement     vortex generator     finned flat tube bank     heat exchanger    

Leidenfrost drops on micro/nanostructured surfaces

Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU

《能源前沿(英文)》 2018年 第12卷 第1期   页码 22-42 doi: 10.1007/s11708-018-0541-7

摘要: In the Leidenfrost state, the liquid drop is levitated above a hot solid surface by a vapor layer generated via evaporation from the drop. The vapor layer thermally insulates the drop from the heating surface, causing deteriorated heat transfer in a myriad of important engineering applications. Thus, it is highly desirable to suppress the Leidenfrost effect and elevate the Leidenfrost temperature. This paper presents a comprehensive review of recent literature concerning the Leidenfrost drops on micro/nanostructured surfaces with an emphasis on the enhancement of the Leidenfrost temperature. The basic physical processes of the Leidenfrost effect and the key characteristics of the Leidenfrost drops were first introduced. Then, the major findings of the influence of various micro/nanoscale surface structures on the Leidenfrost temperature were presented in detail, and the underlying enhancement mechanism for each specific surface topology was also discussed. It was concluded that multiscale hierarchical surfaces hold the best promise to significantly boost the Leidenfrost temperature by combining the advantages of both micro- and nanoscale structures.

关键词: Leidenfrost drop     Leidenfrost temperature     heat transfer enhancement     micro/nanostructured surfaces    

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-freeheat exchangers

Haiyan LI, Jing LIU

《能源前沿(英文)》 2011年 第5卷 第1期   页码 20-42 doi: 10.1007/s11708-011-0139-9

摘要: Water is perhaps the most widely adopted working fluid in conventional industrial heat transport engineering. However, it may no longer be the best option today due to the increasing scarcity of water resources. Furthermore, the wide variations in water supply throughout the year and across different geographic regions also makes it harder to easily access. To address this issue, finding new alternatives to replace water-based technologies is imperative. In this paper, the concept of a water-free heat exchanger is proposed and comprehensively analyzed for the first time. The liquid metal with a low melting point is identified as an ideal fluid that can flexibly be used within a wide range of working temperatures. Some liquid metals and their alloys, which have previously received little attention in thermal management areas, are evaluated. With superior thermal conductivity, electromagnetic field drivability, and extremely low power consumption, liquid metal coolants promise many opportunities for revolutionizing modern heat transport processes: serving as heat transport fluid in industries, administrating thermal management in power and energy systems, and innovating enhanced cooling in electronic or optical devices. Furthermore, comparative analyses are conducted to understand the technical barriers encountered by advanced water-based heat transfer strategies and clarify this new frontier in heat-transport study. In addition, the unique merits of liquid metals that could lead to innovative heat exchanger technologies are evaluated comprehensively. A few promising industrial situations, such as heat recovery, chip cooling, thermoelectricity generation, and military applications, where liquid metals could play irreplaceable roles, were outlined. The technical challenges and scientific issues thus raised are summarized. With their evident ability to meet various critical requirements in modern advanced energy and power industries, liquid metal-enabled technologies are expected to usher a new and global era of water-free heat exchangers.

关键词: heat exchanger     liquid metal     water resource     heat transport enhancement     coolant     thermal management     process engineering     energy crisis     chip cooling    

Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater

Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI

《能源前沿(英文)》 2014年 第8卷 第2期   页码 160-172 doi: 10.1007/s11708-014-0321-y

摘要: This paper presents an experimental analysis of a single pass solar air collector with, and without using baffle fin. The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the bottom plate and under the absorber plate of a solar air heater duct. An experimental study has been conducted to investigate the effect of roughness and operating parameters on heat transfer. The investigation has covered the range of Reynolds number from 1259 to 2517 depending on types of the configuration of the solar collectors. Based on the experimental data, values of Nusselt number have been determined for different values of configurations and operating parameters. To determine the enhancement in heat transfer and increment in thermal efficiency, the values of Nusselt have been compared with those of smooth duct under similar flow conditions.

关键词: Nusselt number     flow rate     heat transfer     heat transfer coefficient     thermal efficiency     forced convection    

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 376-384 doi: 10.1007/s11705-011-1121-0

摘要: In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.

关键词: MHD boundary layer     unsteady flow     heat transfer     thermal radiation     heat source/sink     shrinking sheet     suction/injection    

Exergy analysis and performance enhancement of isopropanol-acetone-hydrogen chemical heat pump

Min XU, Jun CAI, Xiulan HUAI

《能源前沿(英文)》 2017年 第11卷 第4期   页码 510-515 doi: 10.1007/s11708-017-0508-0

摘要: Exergy loss analysis was conducted to identify the irreversibility in each component of the isopropanol-acetone-hydrogen chemical heat pump (IAH-CHP). The results indicate that the highest irreversibility on a system basis occurs in the distillation column. Moreover, the effect of operating parameters on thermodynamic performances of the IAH-CHP was studied and the optimal conditions were obtained. Finally, the potential methods to reduce the irreversibility of the IAH-CHP system were investigated. It is found that reactive distillation is apromising alternative. The enthalpy and exergy efficiency of the IAH-CHP with reactive distillation increases by 24.1% and 23.2%, respectively.

关键词: waste heat reuse     chemical heat pump     exergy analysis     isopropanol    

Effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder heat transfer

Jizu LV, Minli BAI, Long ZHOU, Jian ZHOU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 392-401 doi: 10.1007/s11708-009-0066-1

摘要: Combustion chamber components (cylinder head-cylinder liner-piston assembly-oil film) were treated as a coupled body. Based on the three-dimensional numerical simulation of the heat transfer of the coupled body, a coupled three-dimensional calculation model for the in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupling method, which adopts the coupled three-dimensional simulation of in-cylinder working process and the combustion chamber components. The model was applied in the investigation of the influence of space non-uniformity in heat transfer among combustion chamber components on in-cylinder heat transfer. The results show that the effect of wall temperature space non-uniform distribution of combustion chamber components on heat transfer happens mainly at the end of the compression stroke and expansion stroke. Therefore, it can be concluded that wall temperature space non-uniform distribution of combustion chamber components would influence heat transfer during the intake and exhaust stroke obviously.

关键词: heat transfer     space non-uniformity     soot emission     in-cylinder     diesel    

Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics

《能源前沿(英文)》 2022年 第16卷 第3期   页码 429-444 doi: 10.1007/s11708-021-0747-y

摘要: The intermediate fluid vaporizer (IFV), different from other liquefied natural gas (LNG) vaporizers, has many advantages and has shown a great potential for future applications. In this present paper, studies of IFV and its heat transfer characteristics in the LNG vaporization unit E2 are systematically reviewed. The research methods involved include theoretical analysis, experimental investigation, numerical simulation, and process simulation. First, relevant studies on the overall calculation and system design of IFV are summarized, including the structural innovation design, the thermal calculation model, and the selection of different intermediate fluids. Moreover, studies on the fluid flow and heat transfer behaviors of the supercritical LNG inside the tubes and the condensation heat transfer of the intermediate fluid outside the tubes are summarized. In the thermal calculations of the IFV, the selections of the existing heat transfer correlations about the intermediate fluids are inconsistent in different studies, and there lacks the accuracy evaluation of those correlations or comparison with experimental data. Furthermore, corresponding experiments or numerical simulations on the cryogenic condensation heat transfer outside the tubes in the IFV need to be further improved, compared to those in the refrigeration and air-conditioning temperature range. Therefore, suggestions for further studies of IFV are provided as well.

关键词: intermediate fluid vaporizer     design of structure and intermediate fluid     condensation heat transfer    

A new heat transfer correlation for supercritical fluids

Yanhua YANG, Xu CHENG, Shanfang HUANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 226-232 doi: 10.1007/s11708-009-0022-0

摘要: A new method of heat transfer prediction in supercritical fluids is presented. Emphasis is put on the simplicity of the correlation structure and its explicit coupling with physical phenomena. Assessment of qualitative behaviour of heat transfer is conducted based on existing test data and experience gathered from open literature. Based on phenomenological analysis and test data evaluation, a single dimensionless number, the acceleration number, is introduced to correct the deviation of heat transfer from its conventional behaviour, which is predicted by the Dittus-Boelter equation. The new correlation structure excludes direct dependence of heat transfer coefficient on wall surface temperature and eliminates possible numerical convergence. The uncertainty analysis of test data provides information about the sources and the levels of uncertainties of various parameters and is highly required for the selection of both the dimensionless parameters implemented into the heat transfer correlation and the test data for the development and validation of new correlations. Comparison of various heat transfer correlations with the selected test data shows that the new correlation agrees better with the test data than other correlations selected from the open literature.

关键词: super critical fluids     heat transfer     circular tubes     prediction method    

标题 作者 时间 类型 操作

Augmentation of natural convective heat transfer by acoustic cavitation

Jun CAI, Xiulan HUAI, Shiqiang LIANG, Xunfeng LI,

期刊论文

Numerical analysis on heat transfer enhancement by longitudinal vortex based on field synergy principle

WU Junmei, TAO Wenquan

期刊论文

Numerical investigation and analysis of heat transfer enhancement in channel by longitudinal vortex based

TAO Wenquan, WU Junmei

期刊论文

Numerical investigation on side heat transfer enhancement in 300 kA aluminum reduction cell

WANG Changhong, ZHU Dongsheng, LEI Junxi, ZHOU Jiemin

期刊论文

Numerical simulation and experimental research on heat transfer and flow resistance characteristics ofasymmetric plate heat exchangers

Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU

期刊论文

物料与窑壁间歇接触对回转窑传热过程的强化效应

雷先明,肖友刚

期刊论文

Transversal tube pitch effects on local heat transfer characteristics of the flat tube bank fin mounted

Liangbi WANG, Zhimin LIN, Kangjie SUN, Yuanxin DONG, Song LIU, Yongheng ZHANG,

期刊论文

Leidenfrost drops on micro/nanostructured surfaces

Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU

期刊论文

Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-freeheat exchangers

Haiyan LI, Jing LIU

期刊论文

Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater

Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI

期刊论文

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

期刊论文

Exergy analysis and performance enhancement of isopropanol-acetone-hydrogen chemical heat pump

Min XU, Jun CAI, Xiulan HUAI

期刊论文

Effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder heat transfer

Jizu LV, Minli BAI, Long ZHOU, Jian ZHOU,

期刊论文

Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics

期刊论文

A new heat transfer correlation for supercritical fluids

Yanhua YANG, Xu CHENG, Shanfang HUANG

期刊论文